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Introduction

I Suppose that `n = P(Xn 2 An) is a rare-event probability;

I `n ! 0 as n ! 1;

I Randomness in the system is given by Xn which might be a variable,
vector, process, ...

I And suppose that `n is difficult to compute analytically or numerically;

I But easy to estimate by Monte Carlo simulation.



Monte Carlo Simulations

I fn is PDF (prob. density) of Xn;
I Standard:

1. generate IID Xn(k)’s using fn;

2. take sample mean of {Xn(k) 2 An};

I Importance sampling: find PDF gn;
1. generate IID Xn(k)’s using gn;

2. compute likelihood ratios Ln(Xn(k)) = f (Xn(k))/gn(Xn(k));

3. take sample mean of Zn(k) = Ln(Xn(k)) {Xn(k) 2 An};



This Talk

We shall investigate importance sampling algorithms that use solutions to
auxiliary convex optimization programs (minimum cross-entropy method).

We shall investigate classical simple rare-event problems concerning random
walks, and queues, construct simulation algorithms, and analyse the
efficiency of the estimators.



Efficiency

Let Zn be the unbiased estimator of `n associated with a simulation algorithm.

Definition

(i) Zn is strongly efficient (has BRE) if

lim sup

n!1

Var[Zn]
`2

n
< 1.

(ii) Zn is logarithmically efficient (or AO) if

lim inf

n!1

| logVar[Zn]|
| log `2

n|
� 1.

For unbiased estimators you may replace Var[Zn] by E[Z2

n ].



Zero-Variance

gn(x) =
fn(x) {x 2 An}

`n

gives
Var[Zn] = 0.



Agenda

A. The essence of minimum cross-entropy;

B. Random walk in one dimension; single rare event;

C. Random walk in one dimension; multiple rare events;

D. Face-homogeneous RW (queueing model) in one dimensions; single rare
event;

E. Random walk in two dimensions; non-convex rare event;

F. Face-homogeneous RW (queueing model) in two dimensions;
non-convex rare event;



A. The Essence of Minimum Cross-Entropy (MCE)

I Let Xn be n-dimensional vector; with PDF fn;

I Let H
1

, . . . ,Hm : Rn ! R; b
1

, . . . , bm 2 R;

I Define set An =
Tm

i=1

{x 2 Rn : Hi(x) � bi};

I Polytope when Hi are linear;

I Problem to compute `n = P(Xn 2 An).



MCE Program

This is just one of many possibilities.

inf

gn�0

⇢
D

KL

(gn|fn) :

Z
gn(x) dx = 1,

Z
Hi(x)gn(x) dx � bi, i = 1, . . . ,m

�
.

Note solution gn is PDF for which Egn [Hi(Xn)] � bi for all contraints.

Solution
gn(x) =

fn(x) exp(
Pm

i=1

�iHi(x))

Efn [exp(
Pm

i=1

�iHi(Xn))]
;

where �
1

, . . . ,�m � 0 obtained by dual program

max

�i

mX

i=1

�ibi + Efn

h
exp

⇣ mX

i=1

�iHi(Xn)
⌘i

.



Restrictions

I Single constraint `n = P(H(Xn) � b);

I H is separable H(x) =
Pn

j=1

Hj(xj);

I Independent jumps f (x) =
Qn

j=1

fj(xj).



MCE Solution

g(x) =
nY

j=1

fj(xj) exp(�Hj(xj))
Efj [exp(�Hj(Xj))]

;

where � = 0 if H(x) � b, else

d
d�

nX

j=1

logEfj [exp(�Hj(Xj))] = b.



B. One-Tailed Problem For RW

Random walk (Sk) with IID jumps
(Xj):

S
0

= 0

Sk = Sk�1

+ Xk =
kX

j=1

Xj

Average of 10 sample paths for n = 100.



The Rare Event Problem

I Jump X has PDF f (x).

I f (x) has light positive and negative tails, i.e. E[exp(✓X)] < 1 for all ✓ in
an open interval (�✏, ✏) containing zero.

I Problem: compute `n = P(Sn � n�) for large n and � > E[X] = µ.



State-Dependent Importance Sampling

I
Xn = (X

1

, . . . ,Xn) vector of IID jumps;

I Has joint PDF fn(x) =
Qn

j=1

f (xj);

I IS using joint PDF gn(x);

I Allow to be not independent; not identical;

I (Sk) is allowed to become a time-inhomogeneous Markov chain with
state-dependent jumps;

I Let gk+1

(x|s)dx = P(Xk+1

2 (x, x + dx) | Sk = s);

I Thus (denoting sk = x
1

+ · · ·+ xk),

gn(x1

, . . . , xn) =
n�1Y

k=0

gk+1

(xk+1

|x
1

, . . . , xk) =
n�1Y

k=0

gk+1

(xk+1

|sk).



MCE for Problem B

(R., Taimre 11)
I Notice that gk+1

(x|s) is the marginal pdf of a joint pdf
gk+1!n(xk+1

, . . . , xn|s) of all ‘future’ jumps Xk+1

, . . . ,Xn given Sk = s.

I gk+1!n(·|s) is found as the solution of MCE program with single
inequality constraint (MCE-IN):

inf

g�0

D
KL

(g|fk+1!n)

s.t.
Z

g(x) dx = 1, Eg

h nX

j=k+1

Xj

i
� n� � s.



Solution to MCE-IN

I Define  (✓) = logE[exp(✓X)] log MGF of jump;

I Set µk(s) = (n� � s)/(n � k) average remaining target drift;

I Then
gk+1

(x|s) = f (x)e�x� (�)

where � satisfies
(
 0(�) = µk(s), if µk(s) � µ,

� = 0, otherwise.



Observations

I � depends on time (k) and space (s);

I No biasing if the target set can be reached on average under the original
distribution;

I Otherwise: the next jump is drawn from a distribution so that on average
the process will drift to n�.

The possibility to
‘turn off’ the tilting.



Efficiency of the Estimator

Theorem

The MCE importance sampling estimator is logarithmically efficient.

I The proof is based on the property that the Markov chain (Sk) with the IS
conditional jump densities gk+1

(Xk+1

|Sk) has the same fluid limit as under
the state-independent tilting;

I Optimal state-independent tilting gives logarithmical efficiency.



Zero-Variance Approximation (ZVA)

(Blanchet & Glynn 06; L’Ecuyer, Blanchet, Tuffin & Glynn 10):
I The zero-variance IS pdf is

g⇤
n (x) =

fn(x) {x
1

+ · · ·+ xn � n�}
`n

.

I Use jump PDF’s of the form

gk(x|s)dx = P(Xk 2 (x, x + dx) | Sk�1

= s) =
f (x)vk(s + x)

wk(s)
dx,

where vk(s) approximates P(Sn � n�|Sk = s).

I Apply also refinement of drawing the last jump from the original PDF f
conditioned that Xn � n� � Sn�1

. This makes the rare event certain to
occur.



Efficiency

Theorem

The ZVA importance sampling estimator (with the refinement) has bounded
relative error (BRE) in case of Gaussian jumps.

Proof given in (B&G06).



Efficiencies of IS Estimators (cont’d)

Theorem

The MCE importance sampling estimator (with the refinement) has BRE for
Gaussian jumps.

The proof is based on the similarity between the MCE and ZVA estimators.
And some careful algebraic manipulations.



Simulation Results for N(0, 1) Jumps

Relative half width (RHW) is 1.96 times the relative error.
Overflow level � = 2/3. Sample size m = 10000. Scaling n ranges 50-1000.
Results are averages of 100 repetitions.



Other Jump Distributions

I Left: X has Laplace distribution (‘double exponential’) with mean 0 and
variance 2. Overflow level � = 1.

I Right: X has double Coxian distribution with mean 0 and variance 6.
Overflow level � = 1.5.



What for Heavy Tails?

(Asmussen plus co-authors)

I IID subexponential Xj’s with a concave hazard rate function
⇤(x) = � logP(Xj > x);

I Examples: Weibull (with shape parameter < 1), Pareto (finite mean),
Lognormal;

I Note only positive jumps;

I Goal `n = P(
PN

j=1

Xj > n) for fixed small N and n ! 1.



MCE Programs

(R., Rubinstein 07)

Recall fN(x) original joint PDF (product); gN target IS joint PDF.

1. infgN�0

D
KL

(gN |fN)s.t.
R

gN(x) dx = 1, EgN

hPN
j=1

⇤(Xj)
i
� ⇤(n).

2. Constraint EgN

h
⇤
⇣PN

j=1

Xj

⌘i
� ⇢⇤(n) ( 0 < ⇢ < 1).



Solutions

I Program 1 gives (independent) hazard rate twisting (Juneja &
Shahabuddin 02);

I Program 2 gives (correlated) hazard rate twisting;

I Both logarithmically efficient;

I Program 2 superior, statistically;

I Drawback: generate samples;

I Work in progress on adapted versions.



C. Two-Tailed Problem for RW

I Compute: `n = P(Sn  n↵ or Sn � n�).

I For the same random walk as above, where ↵ < E[X] < � such that

I I(↵) > I(�) for the large deviations rate function I(·).

I Well-known counter example to the use of a single state-independent
importance sampling scheme (Glassermann & Wang 97, Bucklew 04).



Mixed Estimators

Note: the rare event consists of two disjoint events

An(1) = {Sn  n↵} and An(2) = {Sn � n�}.

Suppose that for j = 1, 2:
(i) there is an IS estimator of P(An(j));

(ii) it applies pdf gj(x) for the jumps X
1

, . . . ,Xn;

(iii) it has associated likelihood ratio Lj(x) = f (x)/gj(x);

(iv) corresponding (single-sample) estimator is given by

Zn(j) = Lj(X) {An(j)}.



Implementation

For any n, let �n be a rv on {1, 2} with positive probabilities ⇡n(j).
Such that �n is independent of the Zn(j)’s.

The mixed estimator is defined by

Zn =
X

j

1

⇡n(j)
{�n = j} Zn(j)

=
X

j

1

⇡n(j)
{�n = j} Lj(X) {An(j)}

=
X

j

{�n = j} f (X)
⇡n(j)gj(X)

{An(j)}.

Estimator is unbiased.



Proposition

Theorem

Assume that there are finite constants cj s.t.

lim sup

n!1

E[Z2

n(j)]
(E[Zn(j)])2

 cj

for all j, i.e., all Zn(j) are strongy efficient. Then the mixed estimator is
strongly efficient.

Proof follows by working out the second moment of the mixed estimator E[Z2

n ].



Proposition

Theorem

Assume for any j:
(a) the sequence of probabilities (P (An(j)))n satisfies a large deviations limit

limn!1
1

n logP (An(j)) = �I(j);

(b) the estimator Zn(j) is logarithmically efficient;

(c) the sequence of mixing probabilities (⇡n(j))n may not tend to zero
exponentially fast: limn!1

1

n log

1

⇡n(j) = 0.

Then, the mixed estimator Zn is logarithmically efficient.



Proof

1. Establish LD for E[Zn] by applying the principle of the largest term:

lim

n!1

1

n
logE[Zn] = lim

n!1

1

n
log

X

j

E [Zn(j)] = max

j
lim

n!1

1

n
logE [Zn(j)]

= �min

j
I(j) = �I.

2. Establish lower bound LD for E[Z2

n ] by applying Jensen’s inequality:

lim inf

n!1

1

n
logE

h
Z2

n

i
� lim inf

n!1

1

n
log(E[Zn])

2

= 2 lim inf

n!1

1

n
logE[Zn] = �2I.

3. Establish upper bound LD for E[Z2

n ] (more involved algebra).



Random or Deterministic Mixing?

I Sample size m gives mixed ‘randomized’ estimator:

Zr

n[m] =
1

m

mX

i=1

X

j

1

⇡n(j)
{�(i)

n = j}Z(i)
n (j).

I Mixing deterministic fractions gives mixed ‘deterministic’ estimator:

Zd

n [m] =
X

j

1

mn(j)

mn(j)X

i=1

Z(i)
n (j),

where mn(j) = [⇡n(j)m].

Clearly Var
⇥
Zd

n [m]
⇤
 Var [Zr

n[m]].



The Mixing Probabilities

I Minimise asymptotically the variance of the ‘deterministic’ estimator
using the large deviations rate expressions [Glasserman&Wang 97]:

⇡n(1) =
exp

�
� nI(a) + o(n)

�

exp

�
� nI(a) + o(n)

�
+ exp

�
� nI(b) + o(n)

�

=
1

1 + exp

�
n(I(a)� I(b)) + o(n)

� ⇡ exp

�
� n(I(a)� I(b))

�
.

Cut-off to prevent exponential decaying to zero: ⇡n(1) _ ⌘.

I Apply again MCE: gives numerical values for any n, asymptotically as
n ! 1 similar as above.



Algorithms

1. MCE: mixing the MCE-IN estimators of the single-tail problems.

2. LD: mixing the LD estimators.

3. DW-SOL: state-dependent algorithm of [Dupuis&Wang 04].

In words, this algorithm is doing the following. At any time it detects which of
the two parts of the rare event is the most likely one, and then applies an
exponential tilting of the next jump Xk in order to get there on average.

4. DW-SUBSOL: state-dependent algorithm of [Dupuis&Wang 07].

Each jump is realised from a mixture of exponentially tilted densities, i.e.,

P(Xk+1

2 (x, x + dx)|Sk = s) =
2X

j=1

⇡�j f (x) exp(✓jx �  (✓j))dx.

The tilting parameters ✓j are fixed throughout the simulation, and the mixing
probabilities ⇡�j depend on jump time k + 1, state Sk = s, and so-called
mollification parameter �.

Parameters follow from solving a so-called Isaacs equation.



Simulation Results

Gaussian jumps: µ = 3,�2 = 1. Overflow level ↵ = 2.4999;� = 3.5.
Sample size m = 10000. Scaling n ranges 50-1000.
Results are averages of 100 repetitions.

Laplacian jumps:  = 1. Overflow level ↵ = �1.25;� = 1.0.



D. Face-Homogeneous One-Dimensional RW

Examples: MX/M/1 , M/G/1 (stable).

I (Sk) the state process (after embedding at jump times).

I For ⇤ 2 {0, 1}: (X(⇤)
k ) i.i.d. geometric jumps,

aj = P(X(0) = j) = (1 � p(0))(p(0))j, j = 0, 1, . . . ,

bj = P(X(1) = j) = (1 � p(1))(p(1))j+1, j = �1, 0, . . . .

I Define ⇤(x) = {x > 0}, then

Sk = Sk�1

+ X(⇤(Sk�1

))
k , k = 1, 2, . . . .

I Mean jumps:

µ(0) =
p(0)

1 � p(0)
> 0, µ(1) = �1 � 2p(1)

1 � p(1)
< 0.



Typical Sample Paths

Data: µ(0) = 0.5, µ(1) = �0.3.



Rare Event Problem

I Compute: pn = P(SnT � n�|S
0

= ns
0

);

I or, equivalently after scaling S[n](t) = Snt/n:

P(S[n](T) � �|S[n](0) = s
0

),

I for large n, and fixed given initial state s
0

� 0, target level � > 0 and
horizon T.



Sample Path Large Deviations

[Shwartz-Weiss 1995].

I Concept of path. y : [0, T] ! R+ absolute continuous with y(0) = s
0

.

I Most likely path y[1] given by

y[1](t) =

(
s

0

+ µ(1)t 0  t  t
0

, where t
0

= �s
0

/µ(1)

0 t
0

 t  T.

I Meaning limn!1 P
⇣

sup

0tT

���S[n](t)� y[1](t)
��� < ✏

⌘
= 1.

I Large deviations for piecewise linear paths (generalized to absolute
continuous paths) y : [0, T] ! R�0

:

lim

✏#0

lim

n!1

1

n
logP

⇣
sup

0tT

���S[n](t)� y(t)
��� < ✏

⌘
= �J(y).

I Optimal path to the rare event: y⇤ = arg min{J(y) : y(T) � �}.



After the Calculus

There is a critical horizon T⇤, such that
I for small horizon T (T < T⇤); optimal path is straight line to rare event:

y(1)(t) = s
0

+ v(1)t with ‘speed’ v(1) = (� � s
0

)/T

I Large horizon T (T < T⇤); optimal path follows the most likely path until a
a switching time ⌧⇤, and then goes straight to the rare event:

y(0)(t) =

(
y[1](t), 0  t  ⌧⇤

v(0)(t � ⌧⇤), (⌧⇤  t  T) with ‘speed’ v(0) = �/(T � ⌧⇤).



Optimal Path to Overflow



Importance Sampling

I Bias the (distributions of the) jump variables X(⇤).

I They remain geometric, but with other success probability (other mean
jump).

I Allow biasing to depend on time (k) and state (Sk = s).

I Denote the mean jump (‘drift’) at time k in scaled state s under the
change of measure by

µIS

k (s) = EIS[Xk|Sk�1

/n = s].

Assumption

We consider the case of large horizon, T > T⇤.



Algorithm D(i)

I State independent (constant biasing).

I µIS

k (s) = (� � s
0

)/T.

I The scaled sample paths follow path y(1).



Algorithm D(ii)

I Time dependent biasing.

I No biasing until k = n⌧⇤. Else

µIS

k (s) = �/(T � ⌧⇤).

I The scaled sample paths follow path y(0).



Algorithm D(iii)

I Recursively; state and time dependent.

I Based on the MCE algorithm for RW’s: at any time t = k/n < ⌧⇤,
s = Sk/n is starting point of a scaled overflow problem with horizon
T � (k/n), called the reduced problem.

I Find critical horizon, and switching time of the reduced problem.

I Set µIS

k (Sk/n) so that the scaled process will ‘optimally drift’ to �, i.e.,
follows the optimal path in the reduced problem.



Simulated Paths



Proposition

Theorem

Algorithms D(ii) and D(iii) are logarithmically efficient.

The proof is based on two issues:
1. The sample path large deviations:

lim

n!1

1

n
logE[Zn] = lim

n!1

1

n
log pn = �J(y⇤).

2. Show that the second moment of the estimator Zn satisfies

lim sup

n!1

1

n
logE[Z2

n ]  �2J(y⇤).



Simulation Results

Parameters: µ(0) = 0.5, µ(1) = �0.3, s
0

= 0.4,� = 1, T = 10 > T⇤.
Sample size m = 10000. Scaling n ranges 10-500. Results are averages of 10
repetitions.



E. Two-Dimensional RW

Jump X = (X
1

,X
2

) 2 R2, with PDF f (x).
S

0

= 0 = (0, 0). Sk = Sk�1

+ Xk where
X

1

,X
2

, . . . i.i.d. (abusing notation).

Negative drift (both coordinates)
µ = (µ

1

, µ
2

) = E[X] < 0.

Problem

Compute (or simulate):

pn = P(Sn,1 � n�
1

or Sn,2 � n�
2

| S
0

= 0),

for fixed scaled target level � = (�
1

,�
2

) 2 R2

+, and parameter n ! 1.



Objective

I Define An(j) = {Sn,j � n�j} for j = 1, 2.

I Goal: construct a logarithmically efficient estimator for P(An(1) [ An(2)).

I Difficulty: the rarity set is not convex (Dupuis&Wang 07).



Assumption

There are importance sampling estimators Zn(j) for P(An(j)) that implement
pdf gj(x) for the jumps X

1

, . . . ,Xn.

Thus for j = 1, 2:

Zn(j) =
f (x)
gj(x)

{An(j)}.



Mixed Estimator

Recall the mixed estimator that randomly mixes the Zn(j)’s:

Zr

n =
X

j

1

⇡n(j)
{�n = j} Zn(j)

=
X

j

{�n = j} f (X)
⇡n(j)gj(X)

{An(j)}

Estimator is biased because events An(j) are not disjunct.



Mixture Estimator

Definition

The mixture importance sampling estimator is defined by

Zmix

n =
f (X)P

j ⇡n(j)gj(X)
{
[

j

An(j)}.

Estimator is unbiased.



Proposition

Theorem

Assume that all Zn(j) are strongly efficient, i.e., there are finite constants cj s.t.

lim sup

n!1

E[Z2

n(j)]
(E[Zn(j)])2

 cj.

Then both the mixed estimator Zr

n and the mixture IS estimator Zmix

n are
strongly efficient.

Proof follows by working out the second moment of the estimators.



Proposition

Theorem

Assume for any j:
(a) the sequence of probabilities (P (An(j)))n satisfies a large deviations limit

limn!1
1

n log P (An(j)) = �I(j);

(b) the estimator Zn(j) is logarithmically efficient;

(c) the sequence of mixing probabilities (⇡n(j))n may not tend to zero
exponentially fast: limn!1

1

n log

1

⇡n(j) = 0.

Then, both the mixed estimator Zr

n and the mixture IS estimator Zmix

n are
logarithmically efficient.



Proof

Follows the same reasoning as above (model C); and

lim

n!1

1

n
logP(An(1) [ An(2))

= lim

n!1

1

n
log (P(An(1)) + P(An(2)) = �min

j
I(j),

and
E[(Zmix

n )2]  E[(Zr

n)
2].



Problem

Find the importance sampling densities gj(x) so that the components Zn(j)
are logarithmically efficient.

1. Retain i.i.d. jumps by state-independent exponential tilting:

gj(x1

, x
2

) / f (x
1

, x
2

)e✓1

(j)x
1

+✓
2

(j)x
2 .

The tilting factor ✓
1

:

min

v
2

2R
sup

✓
(✓

1

�
1

+ ✓
2

v
2

�  (✓
1

, ✓
2

)) .

Similar for ✓
2

.

2. Apply MCE to construct state-dependent importance sampling densities
gj(x) for the two components.

No results yet: work in progress.



In a Figure

The red arrow is the drift of the jumps in the component to the right.



F. Fork-Join Queue

Special case of two-dimensional face-homogeneous random walk.

Model
I Poisson (�) arrivals;

I an arriving job splits in two subjobs;

I two independent single server
queues;

I exponential service times with rate µ
1

and µ
2

, resp;

I for stability � < min(µ
1

, µ
2

).

[Flatto & Hahn 84]



The Rare Event

{Sk = (Sk,1, Sk,2) : k = 0, 1, . . .} is the
discrete-time Markov chain analogon of
the fork-join queue by embedding at jump
times;
Sk represents the backlogs at the queues.

Problem

Estimate by simulation:

pn = P(S
1,nT � n�

1

or S
2,nT � n�

2

|S
0

= ns
0

),

for fixed scaled initial state s
0

= (s
0,1, s

0,2) 2 R2

+, fixed scaled threshold
� = (�

1

,�
2

) 2 R2

+, fixed scaled horizon T > 0, and parameter n ! 1.



Face-Homogeneous RW

The fork-join queue is a
face-homogeneous random
walk on Z2

+ with four faces.

I The transition probabilities ps,s+d are constant for s in the same face F(⇤).

I On each face we might associate a random walk (S(⇤)
k )1k=0

with jump
variable X(⇤) with probabilities p(⇤)(j) .

= ps,s+j.



Importance Sampling Scheme

I Our importance sampling scheme will be a mixture of two sets of
exponentially shifted jump probabilities of the jump variables X(⇤).

I For any ✓ 2 R2, the ✓-shifted jump X(⇤)
✓ has jump probabilities

p(⇤)
✓ (j) = eh✓,ji� 

(⇤)(✓)p(⇤)(j),

where  (⇤)(·) is the log moment generating function of jump variable
X(⇤).

I This gives us a set of 4 jump (or transition) probability densities.

I We have two of such sets, and before we simulate a sample path, we
choose randomly a set.



Furthermore

Assumption: the time horizon is large.

I An optimal importance sampling is time-dependent in the sense, that

I after having chosen a set of biased jump probabilities, the biasing starts
not before a switching time ⌧⇤ (cf. the one-dimensional problem).



No Details

The details follow by applying
I sample path large deviations for phase-homogeneous random walks

(Ignatiouk 01, 05);

I universal simulation distributions (Bucklew et al. 90, 04);

I numerical calculations for the optimal shift factors ✓⇤ and the optimal
switching times ⌧⇤.

Under certain conditions, the mixture importance sampling scheme is
logarithmically efficient (Bucklew et al. 90, 04)



Example

� = 1, µ
1

= 1.5, µ
2

= 2, s
0

= (0, 0),� = (1, 1.2), T = 10.
The two sets of biasing schemes are mixed by 0.8 (red path) and 0.2 (blue
path).



Example (cont’d)

Results for scalings n = 25–500 with sample size k = 50000.



Conclusion and Outlook

I MCE seems a promising method for obtaining efficient importance
sampling estimators in random walk environments.

I Higher dimensional rare-event queueing problems are nontrivial and
need more advanced techniques, such as mixtures of important
sampling algorithms.

I Further invastigations include time and state dependent MCE for these
queueing problems.


